

Bachelor of Science (B.Sc.) Semester—II (C.B.S.) Examination
MATHEMATICS
(Vector Calculus and Improper Integrals)
Compulsory Paper—2

Time : Three Hours]

[Maximum Marks : 60

N.B. :— (1) Solve all the **FIVE** questions.

(2) All questions carry equal marks.

(3) Question Nos. **1** to **4** have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) A particle moves so that its position vector is given by $\bar{r} = \cos wt \bar{i} + \sin wt \bar{j}$, where w is constant. Show that :

(i) the velocity \bar{v} of the particle is perpendicular to \bar{r} .

(ii) the acceleration \bar{a} is directed towards the origin and has magnitude proportional to the distance from the origin.

(iii) $\bar{r} \times \bar{v} =$ a constant vector. 6

(B) Prove that $\bar{r}^n \cdot \bar{r}$ is irrotational. Find the value of n when it is solenoidal. 6

OR

(C) If $\bar{v} = \bar{w} \times \bar{r}$, where $\bar{w} = w_1 \bar{i} + w_2 \bar{j} + w_3 \bar{k}$ is a constant vector, $\bar{r} = x \bar{i} + y \bar{j} + z \bar{k}$, then prove that

$$\bar{w} = \frac{1}{2} \operatorname{curl} \bar{v}.$$

6

(D) Find the workdone in moving a particle in the force field $\bar{F} = 3x^2 \bar{i} + (2xz - y) \bar{j} + z \bar{k}$ along the straight line from $(0, 0, 0)$ to $(2, 1, 3)$. 6

UNIT-II

2. (A) Find the area lying between the line $y = x$ and the parabola $y^2 = 4x$. 6
 (B) By changing the order of integration, evaluate :

$$\int_0^2 \int_0^x (x + y^2) dy dx. \quad \text{6}$$

OR

(C) Evaluate $\int_0^2 \int_0^{\sqrt{1-x^2}} \frac{x dx dy}{\sqrt{x^2 + y^2}}$ by changing to polar coordinates. 6

(D) Evaluate $\int_0^a \int_0^{a-x} \int_0^{a-x-y} x^2 dz dy dx.$ 6

UNIT-III

3. (A) Evaluate $\iiint_v x^2 y dv$, where v is the closed region bounded by the planes $x + y + z = 1$,
 $x = 0, y = 0, z = 0.$ 6

(B) State Green's theorem. Using Green's theorem, evaluate the line integral $\oint_C (xy + y^2) dx + x^2 dy$,
 where C is the closed curve bounded by $x = \sqrt{y}$ and $y = x.$ 6

OR

(C) Verify Stoke's theorem for $\vec{A} = (y - z + 2)\vec{i} + (yz + 4)\vec{j} - xz\vec{k}$, where S is the surface of the cube $x = 0, y = 0, z = 0, x = 2, y = 2, z = 2$ above the xy -plane. 6

(D) Verify Divergence theorem for $\vec{A} = 2x^2y\vec{i} - y^2\vec{j} + 4xz^2\vec{k}$ taken over the region in the first octant bounded by $y^2 + z^2 = 9$ and $x = 2.$ 6

UNIT-IV

4. (A) Test the convergence of

(i) $\int_2^\infty \frac{x^2 - 1}{\sqrt{x^6 + 16}} dx$ 6
 (ii) $\int_1^\infty \frac{1 - \cos x}{x^2} dx.$ 6

(B) Prove that $\sqrt{\frac{1}{2}} = \sqrt{\pi}$.

6

OR

(C) Prove that $\beta(m, n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} \theta \cdot \cos^{2n-1} \theta d\theta$,

Hence show that

$$\int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q \theta d\theta = \frac{\frac{p+1}{2} \frac{q+1}{2}}{2 \sqrt{\frac{p+q+2}{2}}}.$$

6

(D) Evaluate using $\beta-\gamma$ function :

(i) $\int_0^{\frac{\pi}{2}} \cos^6 \theta \sin^2 \theta d\theta$.

(ii) $\int_0^{\infty} \frac{x^{-3/2}}{1+x} dx$.

6

Question—V

5. (A) Find $\nabla\phi$ at the point (1, 2, 0) if $\phi = x^2y + 2xz$.

1½

(B) Evaluate $\int_C F \cdot dr$, where $\vec{F} = 2xi + yj$, and C is the straight line $y = x$ from (0, 0) to (1, 1).

1½

(C) Evaluate $\int_0^1 \int_0^2 (x + y^2) dx dy$.

1½

(D) Evaluate $\int_0^{\frac{\pi}{2}} \int_0^2 \gamma^2 dr d\theta$.

1½

(E) Apply Green's theorem to show that the area enclosed by a simple plane curve C is

$$\frac{1}{2} \oint_C (x \, dy - y \, dx). \quad 1\frac{1}{2}$$

(F) Evaluate $\iint_S \vec{r} \cdot \vec{n} \, dS$, where S is a closed surface using the divergence theorem. $1\frac{1}{2}$

(G) Test the convergence of $\int_1^{\infty} \frac{x \, dx}{2x^2 + 3x + 5}$, by comparison test. $1\frac{1}{2}$

(H) Prove that $\beta(m, n) = \beta(n, m)$. $1\frac{1}{2}$